Publications
This page provides an overview on my publications.
Author(s) | Year | Title and Publication | Link |
---|---|---|---|
Jan Dubiński, Antoni Kowalczuk, Franziska Boenisch , Adam Dziedzic | 2025 | CDI: Copyrighted Data Identification in Diffusion Models. CVPR | here |
Shahrzad Kiani, Nupur Kulkarni, Adam Dziedzic, Stark Draper, Franziska Boenisch | 2025 | Differentially Private Federated Learning with Time-Adaptive Privacy Spending. ICLR | here |
Łukasz Staniszewski, Bartosz Cywiński, Franziska Boenisch, Kamil Deja, Adam Dziedzic | 2025 | Precise Parameter Localization for Textual Generation in Diffusion Models. ICLR | here |
Wenhao Wang, Adam Dziedzic, Grace C. Kim, Michael Backes, Franziska Boenisch | 2025 | Captured by Captions: On Memorization and its Mitigation in CLIP Models. ICLR | here |
Dariush Wahdany, Matthew Jagielski, Adam Dziedzic, Franziska Boenisch | 2025 | Differentially Private Prototypes for Imbalanced Transfer Learning. AAAI | here |
Vincent Hanke, Tom Blanchard, Franziska Boenisch, Iyiola Emmanuel Olatunji, Michael Backes, Adam Dziedzic | 2024 | Open LLMs are Necessary for Current Private Adaptations and Outperform their Closed Alternatives. NeurIPS | here |
Wenhao Wang, Adam Dziedzic, Michael Backes, Franziska Boenisch | 2024 | Localizing Memorization in SSL Vision Encoders. NeurIPS | here |
Dominik Hintersdorf, Lukas Struppek, Kristian Kersting, Adam Dziedzic, Franziska Boenisch | 2024 | Finding NeMo: Localizing Neurons Responsible For Memorization in Diffusion Models. NeurIPS | here |
Jiapeng Wu, Atiyeh Ashari Ghomi, David Glukhov, Jesse Cresswell, Franziska Boenisch , Nicolas Papernot | 2024 | Augment then Smooth: Reconciling Differential Privacy with Certified Robustness. TMLR | here |
Shahrzad Kiani, Franziska Boenisch, and Stark C Draper | 2024 | Controlled privacy leakage propagation throughout overlapping grouped learning. IEEE Journal on Selected Areas in Information Theory | here |
Wenhao Wang, Muhammad Ahmad Kaleem, Adam Dziedzic, Michael Backes, Nicolas Papernot, and Franziska Boenisch | 2024 | Memorization in Self-Supervised Learning Improves Downstream Generalization. ICLR | here |
Anvith Thudi, Ilia Shumailov, Franziska Boenisch, and Nicolas Papernot | 2024 | From Differential Privacy to Bounds on Membership Inference: Less can be More. TMLR | here |
Haonan Duan, Adam Dziedzic, Mohammad Yaghini, Nicolas Papernot, and Franziska Boenisch | 2023 | On the Privacy Risk of In-context Learning. ACL TrustNLP Workshop | here |
Haonan Duan, Adam Dziedzic, Nicolas Papernot, and Franziska Boenisch | 2023 | Flocks of stochastic parrots: Differentially private prompt learning for large language models. NeurIPS | here |
Jan Dubiński, Stanisław Pawlak, Franziska Boenisch, Tomasz Trzcinski, and Adam Dziedzi | 2023 | Bucksforbuckets(b4b):Active defenses against stealing encoders NeurIPS | here |
Franziska Boenisch, Christopher Mühl, Adam Dziedzic, Roy Rinberg, Nicolas Papernot | 2023 | Have it your way: Individualized Privacy Assignment for DP-SGD NeurIPS | here |
Franziska Boenisch, Adam Dziedzic, Roei Schuster, Ali Shahin Shamsabadi, Ilia Shumailov and Nicolas Papernot | 2023 | When the Curious Abandon Honesty: Federated Learning Is Not Private. IEEE Euro S&P | here |
Franziska Boenisch, Adam Dziedzic, Roei Schuster, Ali Shahin Shamsabadi, Ilia Shumailov and Nicolas Papernot | 2023 | Is Federated Learning a Practical PET Yet? IEEE Euro S&P | here |
Franziska Boenisch, Christopher Mühl, Roy Rinberg, Jannis Ihrig, and Adam Dziedzic | 2023 | Individualized PATE: Differentially Private Machine Learning with Individual Privacy Guarantees. 23rd Privacy Enhancing Technologies Symposium (PoPETs ‘23) | here |
Matteo Giomi, Franziska Boenisch, Christoph Wehmeyer, and Borbála Tasnádi | 2023 | A Unified Framework for Quantifying Privacy Risk in Synthetic Data. 23rd Privacy Enhancing Technologies Symposium (PoPETs ‘23) | here |
Adam Dziedzic, Haonan Duan, Muhammad Ahmad Kaleem, Nikita Dhawan, Jonas Guan, Yannis Cattan, Franziska Boenisch, and Nicolas Papernot | 2022 | Dataset Inference for Self-Supervised Models. NeurIPS | here |
Karla Pizzi, Franziska Boenisch, Ugur Sahin, and Konstantin Böttinger | 2022 | Introducing Model Inversion Attacks on Automatic Speaker Recognition. Proc. 2nd Symposium on Security and Privacy in Speech Communication | here |
Tabea Kossen, Manuel Hirzel, Vince Madai, Franziska Boenisch, Anja Hennemuth, Kristian Hildebrand, Sebastian Pokutta, Kartikey Sharma, Adam Hilbert, Jan Sobesky, Ivana Galinovich, Ahmed Khalil, Jochen Fiebach, and Dietmar Frey. | 2022 | Towards sharing brain images: Differentially private TOF-MRA images with segmentation labels using generative adversarial networks. Frontiers in Artificial Intelligence | here |
Franziska Boenisch | 2021 | A Systematic Review on Model Watermarking for Neural Networks. Frontiers in Big Data, 4(96). | here |
Franziska Boenisch, Reinhard Munz, Marcel Tiepelt, Simon Hanisch, Christiane Kuhn, and Paul Francis | 2021 | Side-Channel Attacks on Query-Based Data Anonymization. ACM CCS | here |
Franziska Boenisch, Verena Battis, Nicolas Buchmann, and Maija Poikela | 2021 | “I Never Thought About Securing My Machine Learning Systems”: A Study of Security and Privacy Awareness of Machine Learning Practitioners Mensch und Computer 2021, 520-546. | here |
Sörries, Peter, Claudia Müller-Birn, Katrin Glinka, Franziska Boenisch, Marian Margraf, Sabine Sayegh-Jodehl, and Matthias Rose | 2021 | Privacy Needs Reflection: Conceptional Design Rationales for Privacy-Preserving Explanation User Interfaces. Mensch und Computer 2021, Workshow-Proceedings. | here |
Franziska Boenisch | 2021 | Privatsphäre und Maschinelles Lernen. Datenschutz Datensicherheit 45, 448–452. | here |
Franziska Boenisch, Philip Sperl, and Konstantin Böttinger | 2021 | Gradient Masking and the Underestimated Robustness Threats of Differential Privacy in Deep Learning. arXiv preprint arXiv:2105.07985 | here |
Franziska Boenisch, Benjamin Rosemann, Benjamin Wild, David Dormagen, Fernando Wario, and Tim Landgraf | 2018 | Tracking all members of a honey bee colony over their lifetime using learned models of correspondence. Frontiers in Robotics and AI. 5(35). | here |