Bringing Privacy-Preserving Machine Learning Methods into Real-World Use


Abstract: Nowadays, there exist several privacy-preserving machine learning methods. Most of them are made available to potential users through tools or programming libraries. However, in order to thoroughly protect privacy, these tools need to be applied in the correct scenarios with the correct setting. This lecture covers the identification of concrete threat spaces concerning privacy in machine learning, the choice of adequare protection measures, and their practical application. Especially the latter point is discussed in class with respect to general usability and design patterns.