Privacy-preserving Machine Learning with Differential Privacy


Abstract: With the growing amount of data being collected about individuals, ever more complex machine learning models can be trained based on those individuals’ characteristics and behaviors. Methods for extracting private information from the trained models become more and more sophisticated, such that individual privacy is threatened. In this talk, I will introduce some powerful methods for training neural networks with privacy guarantees. I will also show how to apply those methods effectively in order to achieve a good trade-off between utility and privacy.

Video-recording of the meetup available here.