Feature Importance in Decision Trees:

Impurity-based Importance Calculations & Explainable AI

Dr. Franziska Boenisch

You already interact(ed) with decision trees!

May 11, 2023 2m read

Random Forests: Netflix Customer Recommendations Improved by 20%

... watching Netflix ...

Spotify — Decision Trees with Music Taste

7 min read · Nov 26, 2020

... or listening to music.

Outline for Today

- Intuition on classification with decision tree
- Impurity-based feature importance metrics
- Building decision trees based on impurity reduction
- Feature importance and explainable AI

Datasets and Tree-based Classification

Dataset from my Lecture

Social Media Time (min)	Attends Class	Passed the Midterm	
30	Yes	Pass	
80	Yes	Pass	
140	Yes	Pass	
50	Yes	Pass	
110	No	Fail	
60	No	Fail	
100	Yes	Fail	
120	No	Fail	
1 I	Î	Î	
Continuous	Categoric	al J	
Features		Label	

Time on social media (min)

Finding the Best Split Criterion

Social Media Time (min)	Attends Class	Passed the Midterm	
30	Yes	Pass	
80	Yes	Pass	
140	Yes	Pass	
50	Yes	Pass	
110	No	Fail	
60	No	Fail	
100	Yes	Fail	
120	No	Fail	

Is attendance our best spilt?

Gini Impurity: Definition

Given a node with K classes and class probabilities p_1, \dots, p_k . The **Gini Impurity** is defined as $Gini(Node) = 1 - \sum_{k=1}^{K} p_k^2$. Here: $1 - (p_{pass}^2 + p_{fail}^2)$ $p_{pass} = \frac{4}{5}, p_{fail} = \frac{1}{5}$ $p_{pass} = \frac{6}{3}, p_{fail} = \frac{3}{3}$

In our example:

- True branch: Gini(L) =
$$1 - \left(\frac{4}{5}\right)^2 - \left(\frac{1}{5}\right)^2 = 0.32$$

- False branch: Gini(R) = $1 - (0)^2 - (1)^2 = 0$ Gini of a pure split is zero

Gini Impurity and Entropy

Impurity

Alternative to Gini:

Entropy = $-\sum_k p_k \log_2 p_k$,

with p_k : proportion of data from class k in the node.

Gini Impurity of the Entire Split

Gini Impurity on Continuous Values

Pass: 4, Fail: 4

Goal: Identify the best splitting threshold

Gini Impurity on Continuous Values

Gini(L) = 0 $Gini(R) \approx 0.44$

 $Gini_{split} \approx 0.33$

Impurity Reduction to Choose the Best Split

Pass: 4, Fail: 4 Choose the split that causes the maximum **impurity reduction** $\Delta i(split)$: Attends $\Delta i (split) = \max(\widetilde{Gini_{parent}} - Gini_{split})$ Gini impurity over all possible splits: $Gini_{parent} = 1 - \left(\frac{1}{2}\right)^2 - \left(\frac{1}{2}\right)^2 = 0.5$ (is fixed \rightarrow find lowest $Gini_{split}$ $Gini_{Attends} = 0.2$ $Gini_{Time < 55} = 0.33$ $Gini_{Time < 70} = 0.48$ $Gini_{Time < 90} = 0.38$ $Gini_{Time < 130} = 0.44$ $\Delta i (Attends) = 0.5 - 0.2 = 0.3$

From Trees to Explainable AI

Decisions in the tree are:

- Human-interpretable
- Verifiable
- We can ask "What if?" (Counterfactuals)

Impurity-based Feature importance

Feature Importance for Explainability

Understanding predictions Model debugging

Identifying biases

Summary & Lecture Materials

Decision Trees: Omnipresent

Divide Data in Regions

Feature Splits

Serve Explainable Al

Lecture Materials:

Lecture by Franziska Boenisch, July 7th, 2025, TUM Heilbronn